Spectral Theory

نویسنده

  • J. Hulshof
چکیده

In many applications it is important to understand the spectral properties of a linear operator T : X → X, where X is some vector space over IR or I C. In the finite dimensional (complex) case linear operators may be characterised as matrices and the Jordan normal form theorem applies, providing a basis of generalised eigenvectors. If, in addition, T is normal (i.e. T and T ∗ commute) with respect to an inner product, then the basis is orthogornal and consists of eigenvectors only. For spectral theory it is often convenient to work in complex spaces. For symmetric operators however the real numbers are just fine. The simplest theorem for the infinite dimensional case may be formulated and proved in the real setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Spectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory

In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...

متن کامل

A variational approach to the problem of oscillations of an elastic half cylinder

This paper is devoted to the spectral theory (more precisely, tothe variational theory of the spectrum) of guided waves in anelastic half cylinder.  We use variational methods to investigateseveral aspects of propagating waves, including localization (seeFigure 1), existence criteria and the formulas to find them. Weapproach the problem using two complementary methods: Thevariational methods fo...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

hp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates

There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007